Imperial College
London

Lecture 15

Memories

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/E2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 1

Lecture Objectives

¢ Explain the sequence of events in reading from and writing to
a static RAM

¢ Explain the structure and input/output signals of a static RAM
¢ How to design an address decoder

¢ Investigate the timing diagrams for a microprocessor when
reading from or writing to memory

¢ Explain how the embedded memory in an FPGA can be used
to implement memory blocks in a digital design

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 2

Simplified RAM Organization

Addr

OE

A typical 8-bit microprocessor typically has

*

* & o o

_ A typical memory has:
(] .
g 4k x 16 As square as +N-bit addrgss bgs
g possible to e This defines 2" memory
o 256 x 256 minimise locations
memory parasitic +M-bit data bus
array capacitances e This defines the size of
of BL and WL data word
+Control signals to define read/write
cycles,
16:1 mux
e Asynchronous memory —
> postdecoders no clock in control
] e Synchronous memory —
Do D; D, Ds Dic - every action synchronised

to a clock

A 16-bit address bus, A15:0
e Can have up to 2'%=65536 memory locations
An 8-bit data bus, D7:0 - Each data word in memory has 28 = 256 possible values
In the RAM shown above uses 12-bit address and 16-bit data, i.e. 4096 locations of 16-bits each
These are arranged as 256 x 256 rows of memory cells. 4096 = 256 rows x 16 columns as shown

The address bus is therefore split into two components: 8-bit to specify which row, and 4-bit to
select the correct column.

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 3

RAM: Read/Write Memory

8k x 8 Static RAM

Static RAM: Data stored in bistable latches

Dynamic RAM: Data stored in charged capacitors:
retained for only 2ms.
Less circuitry = denser = cheaper.

RAM
8192 x 8
A12:0 2N
D7:0
hulic WR V He—>—
OE
OE
CE CE
CE OE WR DO:7 Action
0 ? ? Hi Z Disabled
1 0 0 Hi Z Idle
1 1 0 Out Read
1 ? 1 In Write

Hi Z = High impedance

\% Tri-state output: Low, High or Off (High Impedance).
Allows outputs from several chips to be connected;
Designer must ensure only one is enabled at a time.

CE Chip Enable: disabling chip cuts power by 80%.
OE Output Enable: Turns the tri-state outputs on/off.
A12:0 Address: selects one of the 23 8-bit locations.
WR Write: stores new data in selected location

D7:0 Data in for write cycles or out for read cycles.

PYKC 2 Dec 2025

EE2 Circuits & Systems Lecture 15 Slide 4

8k x 8 Static RAM

: 256 Cell
¢ The 64k memory cells are arranged in a square array: o
s N
RAM (Bit 7 |« D7
8192 x 8 Bit 6 <« » D6
: : D5
A12:0
A B!t 5 —<—>E
WR D7:0 8 x 32 4 Bit 4 | «» 22
WR V He—>— = 256 cells Bit 3 | <« D3
OE Bit 2 _«» D2
OE _ D1
CE Bit 1 ——>——
CE | 32cells { Bit 0 -« D0
256 cells
r % A\
¢ For each output bit, an 8192-way 32 =
multiplexer selects one of the cells. The cells 3
control signals, OE, CE and WR /
d.eteltmlne how it connects to the output A12:0 (8192-way multiplexen) A
pin via buffers:
CE*WR |
_ v
¢ Occasionally DIN and DOUT are (I 1 1
separate but = more pins ; }
CE<OE-IWR ‘

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 5

Microprocessor 4= Memory Interface

WP Memory
A15:0
A H- A
16 16"
D7:0
DV «—> -+ DV
8 8
Control Control
Signals Signals
CLOCK

+ During each memory cycle:
+ A15:0 selects one of 26 possible memory locations

+ D7:0 transfer one word (8 bits) of information either to the memory (write) or to the
microprocessor (read).

+ D7:0 connections to the microprocessor are tri-state (V): they can be:
— “logic 07, “logic 1” or “high impedance” (inputs)
+ The control signals tell the memory what to do and when to do it.
PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 6

Addresses (hexadecimal)

$FFFF

$F000
$EFFF

$B000

$TFFF

$0000

Input/Output

Microprocessor Memory Map

ROM
16k words

Unused

RAM
32k words

We can tell which region of
memory an address is in by
inspecting the top few bits:
WP Memory
A15:0 .
AL R A15:12
F: 1111 Input/Output
E: 1110 ROM
oV Ao D70 —Hov D 1101 ROM
C: 1100 ROM
B: 1011 ROM
Control Control A: 1 01 O
Signals Signals 9: 1 001
CLOCK 8: 1000
7 0111 RAM
6: 0110 RAM
5. 0101 RAM
4: 0100 RAM
3: 0011 RAM
2: 0010 RAM
1: 0001 RAM
0: 0000 RAM
RAM = ~A15

ROM = A15 & A14 & ~(A13 & A12) + (A15 & ~A14 & A13 & A12)
INOUT = A15 & A14 & A13 & A12

PYKC 2 Dec 2025

EE2 Circuits & Systems Lecture 15 Slide 7

Memory Chip Selection

+ Each memory circuit has a “chip enable” input (CE)
o The “Decoder” uses the top few address bits to decide which memory circuit should be enabled.
Each one is enabled only for the correct address range:
RAM = ~A15
ROM = A15&A14 & ~(A13 & A12) + (A15 & ~A14 & A13 & A12)
INOUTXx = A15&A14 & A13 & A12 & ~A11 & A10 & ~A9 & A8 & ~A7 & A6 & A5 & A4 &~A3 & A2

¢ INOUTX responds to addresses: $F574 to $F577
other 1/O circuits will have different addresses

¢ Low n address bits select one of 2" locations within each memory circuit (value of n depends on
memory size)

MuP
P PA— A15:0
Addr Range Usage L SAM L ROM | JL o
$F578 - $SFFFF Not used 151]A 1471 A ___. 21A
$F574 - $F577 INOUTX
$FO00 - $F573 Not used CE)71
$B000 - SEFFF 16k ROM
$8000 - SAFFF Not used 1° Pecoder
$0000 - $7FFF 32k RAM A15:0 RAM
ROM —
INOUTX .

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 8

Memory Interface Control Signals

uP Memory

A15:0 Control signals vary between pProcessors
but all have:

¢ Aclock signal to control the timing (can
be the same as the system CLOCK)

DV £ A~ DV

+ Asignal to say whether the
microprocessor wants to read from
WRITE memory or to write to memory

cLock — Must make sure that D7:0 is only
— driven at one end

Read Cycle Write Cycle

MCLOCK

A A .
v Z r A
MCLOCK ~] | |] | L
A15:0 T XXXRXOX : YOO
WRITE T XXXXXXX\ OXOKXXKY
from pP : XOOOOO0) YXXOOOOXX
D7:0]
from mem . :

D7:0 from memory only allowed when MCLOCK & ~WRITE true

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 9

Memory Circuit Control Signals

uP AlS:0 to decoder RAM
32k x 8
, A15:0 / A14:0
A 16 15’ A
D7:0
DV /8 | > | ?’ DV
WRITE
{ 1 & OE
WR
MCLOCK ® &
from decoder CE
Read Cycle
. A .
4)
MCLOCK | | [
A15:0 : XXOOOOXX
WRITE : XOOOOOO00N

from pP 5 XOOOOOOK)
D7:0 ;
from mem

TXXRXXRKX

¢ Output enable: OE = MCLOCK & ~WRITE
turns on the D7:0 output from the
memory

¢ Write enable: WE = MCLOCK & WRITE
writes new information into the selected
memory location with data coming from
microprocessor

¢ Chip enable: comes from the decoder

and makes sure the memory only
responds to the correct addresses

Write Cycle
— | L
 OXXXXXX
XXX
OXROKXX

PYKC 2 Dec 2025

EE2 Circuits & Systems

Lecture 15 Slide 10

Max 10 FPGA - Embedded blocks

el & > MAX10 device: 10M50DAF484C7G

« 50,000 Logic Elements (4-LUT + FF)
» 182 M9K embedded memory blocks
» 9,888 kbits user flash memory

A + 144 hard multiplier (18 x 18)

» 4 PLL (for clock generation

1/0 Banks

(M

1/0 Banks

1/0 Banks

< 10 Banks

Embedded Memory Embedded Multipliers
PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 11

MAX 10 Embedded Memory

¢ Each 9kbit memory block (M9K) can be configured
with different data width from 1 bit to 36 bit wide

¢ It also has multiple operating modes (which is user

configurable), of which we will focus on the
following only: 1-port ROM, FIFO, 2-port RAM

8192 x 1

4096 x 2

Single-port
Simple dual-port
True dual-port
Shift-register
ROM

FIFO

2048 x 4

1024 x 8

Depth x width 1024 x 9

512 x 16

512 x 18

256 x 32

256 x 36

PYKC 2 Dec 2025 EE2 Circuits & Systems

Lecture 15 Slide 12

Intialization of ROM Contents (1k x 8)

¢ Create ROM and initialize its content in a .mif file;

Block type: AUTO

|—— ROM Initialization file
WIDTH = 10;

DEPTH = 1024;
ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT

BEGIN
0 : 200;
1: 203;
2 : 206;
3 : 209;
4 : 20C;
5 : 20F;
6 : 212;
7 : 215;
8 : 219;
9 : 21C;
A : 21F;

PYKC 2 Dec 2025 EE2 Circuits & Systems

Lecture 15 Slide 13

Sinewave Generation

+ Generate any waveform or function y = F'(x) using table lookup
+ Phase counter increment phase whenever step goes high
+ ROM stores one cycle of sinewave to produce F(x)
+ Digital-to-Analogue convert and the PWM DAC generate the analogue outputs on
L & R channels
Address A[9:0] D[9:0
counter A 1Kx10 p 2 data_in
(10-bit) ROM SPl interface
¢ spi2dac to DAC
en > clk load
> clk
S0MHz S £5000 10kHz sampling pulse —
D clk pwm_out
P to LP filter
data_in

PYKC 2 Dec 2025

EE2 Circuits & Systems

Lecture 15 Slide 14

Dual-port RAM (8k x 9)

¢ Limited data width (1t0 9, 16, 18, 32, 36 ...)
+ Depth up to 65,536 (4-bit to 16-bit address)

ta[8..0]
address[12..0] + Simple dual-port: 1 read port & 1 write port
en + True dual-port: both ports can read/write

den

ﬁdaddtess[lz..OJ

(;Iock

sock Type: AUTC Signalname | ___________meaning___________

O e N R T,

data[] Write data port
address|] Read/write address port
ql] Read data port
wren Write enable
rden Read enable
clock Clock signal to control both read & write

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 15

How to use M9K memory block? (8k x 9)

¢ Use IP Catalog manager tool in Quartus to produce memory of the

correct configuration: P Catalog 108
RAM S —
ta[8. 0] I RAM : » [
address[12..0 .| .clock (clock sig),
- 2l | .data (data_sig), Jllaneous
H i3 | .rdaddress (rdaddress sig), hip Memory
daddress(12..0 & .rden (rden sig),
ﬁ&—‘—‘—:[j- - .wraddress (wraddress sig), | FIFO
n .
- ::r((enq(S\;;er)_ug ' On-Chip Flash Intel FPGA
o)i RAM; 1-PORT
. £ RAM: 2-PORT
. File Description G
ROM: 1-PORT
(] RAM.inc AHDL Include file # ROM: 2-PORT
[| RAM.cmp VHDL component declaration file :
r g
| | RAM,bsf Quartus Prime symbol file Shift reg|5ter(RAM based
@ RAM inst.v Instantiation template file
@ RAM bb.v Verilog HDL black-box file

PYKC 2 Dec 2025

EE2 Circuits & Systems

Lecture 15 Slide 16

First-in-first-out (FIFO) Memory

stating state

Used to implement queues.

These find common use in computers
and communication circuits.

Generally, used for rate matching data
producer and consumer:

¢ Producer can perform many writes without
consumer performing any reads (or vice
versa). However, because of finite buffer
size, on average, need equal number of
reads and writes.

¢ Typical uses:

e interfacing I/O devices. Example
network interface. Data bursts from

»
>

3

network, then processor bursts to
11— memory buffer (or reads one word at a

after write

time from interface). Operations not
synchronized.

»

4

e Example: Audio output. Processor
produces output samples in bursts

producer

after re

ad

consumer

(during process swap-in time). Audio

A 4

DAC clocks it out at constant sample
rate.

PYKC 2 Dec 2025

EE2 Circuits & Systems Lecture 15 Slide 17

FIFO Interfaces

l l ¢ Address pointers are used internally to keep
—p RST CLK next write position and next read position into
N a dual-port memory.
—1 WE
| FuLL FIFO write ptr —
| EMPTY <—read ptr

— RE

Dourt + If pointers equal after write = FULL:

+ After write or read operation, FULL

and EMPTY indicate status of write ptr —> <— read ptr
buffer.

+ Used by external logic to control + If pointers equal after read = EMPTY:
own reading from or writing to the
buffer. write ptr — <—read ptr

¢ FIFO resets to EMPTY state.

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 18

M9K Memory as FIFO (8-bit x 32 word)

- module FIFO (
2 clock,
datea,
rdreq,
sclr,
wrredq,
empty,
full,

a):

FIFO
¥ data[7..0] q[7..0]

¥— wrreq full
#— rdreq empty

*—> clock

input clock;
input [7:0] data;
input rdreq:;
3 input sclr;

ﬁé input wrreq;
ORS00 SO0N00s output empty:
output full;
ocutput [7:0] aq

endmodule

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 19

System Verilog specification of 256 x 8 ROM

module rom #(
rametel ADDRESS_WIDTH = 8,
DATA_WIDTH = 8

input logic clk,
input logic ADDRESS_WIDTH-1:0] addr,
output logic DATA_WIDTH-1:0 dout
rom
gic [DATA_WIDTH-1:0] rom_array [2#kADDRESS_WIDTH-1:0]; 256 x 8
addr [7:0] dout[7:0]
initial begin
$display("Loading rom.");
$readmemh("sinerom.mem", rom_array); ___fffi__:>

end;

always_ff @(posedge clk)

dout <= rom_array [addr];

endmodule

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 20

Initialization of the ROM

rom

256 x 8
addr[7:0] dout [7:0]

initial begin
$display('"Loading rom.");

$readmemh("sinerom.mem", rom_array); clk

sinegen.py sinerom.mem

import math
import
f = open("sinerom.mem","w")
for i in range(256):
v = int(math.cos(2%3.1416%1i/256)%127+127)
if (i+1)%16 == 0:
s = "{hex:2
else:
S {hex:2X}
f.write(s.format(hex=v))

f.close()

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 21

Simple Sinewave Generator

#

_ counter
lncr[7:0:|ﬁ address 7:0] dout[7‘o]
count[7:0] A ﬁ
rst — |
en
>
clk >

module sinegen #
A_WIDTH
D_WIDTH

input

input

input)gi

input) D_WIDTH-1:
output g D_WIDTH-1:

[A_WIDTH-1:0] address;

addrCounter | Instantiate counter module called addrCounter
.clk (clk),
.rst (rst),
.en (en), .
e (e, external signal name

.count (address

Internal signal name

sineRom (
.clk (clk),
.addr (address),
.dout (dout

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 22

Parameterised ROM:

module rom #(
parametel ADDRESS_WIDTH = 8,
DATA_WIDTH = 8

input logic clk,
input logic ADDRESS_WIDTH-1:0] addr,
output logic DATA_WIDTH-1:0 dout
rom
1024 x 9
addr[9:0] dout [8:0]

ogic [DATA_WIDTH-1:@] rom_array [2%kADDRESS_WIDTH-1:0];

initial begin clk
$display("Loading rom."); —
$readmemh("sinerom.mem", rom_array);

end;
always_ff @(posedge clk)

dout <= rom_array [addr];

rom #(10, 9) sineRom_1024x9 (

endmodule

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 23

Dual-port ROM

module rom2ports #(
rameter ADDRESS_WIDTH = 8,
DATA_WIDTH = 8

input

input logic ADDRESS_WIDTH-1:0
input logic ADDRESS_WIDTH-1:0
output logic DATA_WIDTH-1:0
output logic DATA_WIDTH-1:0

addrl[7:0]] rom2ports

)y 256 X8 | Gout1[7:0]

ogic [DATA_WIDTH-1:@0] rom_array [2%kADDRESS_WIDTH-1:0]; ﬁ
addr2[7:0]
initial begin
$display("Loading rom."); doutl[7:0]
clk
$readmemh("sinerom.mem", rom_array); > ﬁ

end;

always_ff @(posedge clk) begin

doutl <= rom_array [addrl];
dout2 <= rom_array [addr2];
end

endmodule

PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 24

Dual-port RAM

#(
ADDRESS_WIDTH = 8,
DATA_WIDTH = 8

module ram2ports

cer

parame

Logic clk,
wr_en,
rd_en,
wr_addr,
rd_addr,
din,
dout

input
input
input
input
input
input ;
output Llogic

loaa
logic
Llogic ADDRESS_WIDTH-1:0
ADDRESS_WIDTH-1:0
DATA_WIDTH-1:0

DATA_WIDTH-1:0

‘,(,Z_}j'

ogic [DATA_WIDTH-1:0] ram_array [2%xADDRESS_WIDTH-1:0];
always_ff @(posedge clk) begin

if (wr_en == 1'bl
ram_array (wr_addr
rd_en == 1'bl

<= din;

if
dout <= ram_array [rd_addr!;

end

endmodule

wr addr[7:0]

ﬁ

ram2ports
256 x 8

rd addr [7:0]

h

dout[7:0]

rd en

PYKC 2 Dec 2025 EE2 Circuits & Systems

Lecture 15 Slide 25

